Sparse low-rank separated representation models for learning from data
نویسندگان
چکیده
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملLow-Rank and Eigenface Based Sparse Representation for Face Recognition
In this paper, based on low-rank representation and eigenface extraction, we present an improvement to the well known Sparse Representation based Classification (SRC). Firstly, the low-rank images of the face images of each individual in training subset are extracted by the Robust Principal Component Analysis (Robust PCA) to alleviate the influence of noises (e.g., illumination difference and o...
متن کاملTopics in learning sparse and low-rank models of non-negative data
Advances in information and measurement technology have led to a surge in prevalence of high-dimensional data. Sparse and low-rank modeling can both be seen as techniques of dimensionality reduction, which is essential for obtaining compact and interpretable representations of such data. In this thesis, we investigate aspects of sparse and low-rank modeling in conjunction with non-negative data...
متن کاملCombining graph embedding and sparse regression with structure low-rank representation for semi-supervised learning
Introduction Complex adaptive systems (CAS) research area is trying to establish a comprehensive and general understanding of the complex world around us (Niazi and Hussain 2013). Complex systems typically involve the generation of high dimensional data and rely on effective analysis and management of such high-dimensional data. High dimensional data exists in a wide variety of real application...
متن کاملEnhanced low-rank representation via sparse manifold adaption for semi-supervised learning
Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
سال: 2019
ISSN: 1364-5021,1471-2946
DOI: 10.1098/rspa.2018.0490